331 research outputs found

    Using multi-spectral UAV imagery to extract tree crop structural properties and assess pruning effects

    Get PDF
    Unmanned aerial vehicles (UAV) provide an unprecedented capacity to monitor the development and dynamics of tree growth and structure through time. It is generally thought that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes fruit-picking easier, and may increase yield, as it increases light interception and tree crown surface area. To establish the response of pruning in an orchard of lychee trees, an assessment of changes in tree structure, i.e., tree crown perimeter, width, height, area and Plant Projective Cover (PPC), was undertaken using multi-spectral UAV imagery collected before and after a pruning event. While tree crown perimeter, width and area could be derived directly from the delineated tree crowns, height was estimated from a produced canopy height model and PPC was most accurately predicted based on the NIR band. Pre- and post-pruning results showed significant differences in all measured tree structural parameters, including an average decrease in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree crown area of 3.5 m(2), and PPC of 14.8%. In order to provide guidance on data collection protocols for orchard management, the impact of flying height variations was also examined, offering some insight into the influence of scale and the scalability of this UAV-based approach for larger orchards. The different flying heights (i.e., 30, 50 and 70 m) produced similar measurements of tree crown width and PPC, while tree crown perimeter, area and height measurements decreased with increasing flying height. Overall, these results illustrate that routine collection of multi-spectral UAV imagery can provide a means of assessing pruning effects on changes in tree structure in commercial orchards, and highlight the importance of collecting imagery with consistent flight configurations, as varying flying heights may cause changes to tree structural measurements

    Non-parametric Bayesian inference for inhomogeneous Markov point processes

    Get PDF

    Assessing stream bank condition using airborne LiDAR and high spatial resolution image data in temperate semirural areas in Victoria, Australia

    Get PDF
    Stream bank condition is an important physical form indicator for streams related to the environmental condition of riparian corridors. This research developed and applied an approach for mapping bank condition from airborne light detection and ranging (LiDAR) and high-spatial resolution optical image data in a temperate forest/woodland/urban environment. Field observations of bank condition were related to LiDAR and optical image-derived variables, including bank slope, plant projective cover, bank-full width, valley confinement, bank height, bank top crenulation, and ground vegetation cover. Image-based variables, showing correlation with the field measurements of stream bank condition, were used as input to a cumulative logistic regression model to estimate and map bank condition. The highest correlation was achieved between field-assessed bank condition and image-derived average bank slope (R2 1/4 0.60, n 1/4 41), ground vegetation cover (R2 1/4 0.43, n 1/4 41), bank width/height ratio (R2 1/4 0.41, n 1/4 41), and valley confinement (producer's accuracy 1/4 100%, n 1/4 9). Crossvalidation showed an average misclassification error of 0.95 from an ordinal scale from 0 to 4 using the developed model. This approach was developed to support the remotely sensed mapping of stream bank condition for 26,000 km of streams in Victoria, Australia, from 2010 to 2012

    Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines

    Get PDF
    Mine sites are routinely required to rehabilitate their post-mining landforms with a safe, stable and sustainable land-cover. To assess these post-mining landforms, traditional on-ground field monitoring is generally undertaken. However, these labour intensive and time-consuming measurements are generally insufficient to catalogue land rehabilitation efforts across the large scales typical of mining sites (>100 ha). As an alternative, information derived from Unmanned Aerial Vehicles (UAV) can be used to map rehabilitation success and provide evidence of achieving rehabilitation site requirements across a range of scales. UAV based sensors have the capacity to collect information on rehabilitation sites with extensive spatial coverage in a repeatable, flexible and cost-effective manner. Here, we present an approach to automatically map indicators of safety, stability and sustainability of rehabilitation efforts, and demonstrate this framework across three coalmine sites. Using multi-spectral UAV imagery together with geographic object-based image analysis, an empirical classification system is proposed to convert these indicators into a status category based on a number of criteria related to land-cover, landform, erosion, and vegetation structure. For this study, these criteria include: mapping tall trees (Eucalyptus species); vegetation extent; senescent vegetation; extent of bare ground; and steep slopes. Converting these land-cover indicators into appropriate mapping categories on a polygon basis indicated the level of rehabilitation success and how these varied across sites and age of the rehabilitation activity. This work presents a framework and workflow for undertaking a UAV based assessment of safety, stability and sustainability of mine rehabilitation and also provides a set of recommendations for future rehabilitation assessment efforts

    Mapping banana plants from Orthophotos to facilitate eradication of Banana Bunchy Top Virus in Queensland, Australia

    Get PDF
    The Banana Bunchy Top Virus results in reduced plant growth and prevents banana production. Because of the very large number of properties with banana plants in South East Queensland, Australia, a mapping approach was developed to delineate individual and clusters of banana plants. This will help finding banana plants and enable prioritisation of plant inspections. The developed mapping approach was based on very high spatial resolution airborne orthophotos. Object‐based image analysis was used to: (1) detect banana plants using edge and line detection approaches; (2) produce neat outlines around classified banana plants; and (3) evaluate the mapping results. The mapping approach was developed based on 10 image tiles of 1 km x 1 km from September 2011. Based on field inspections of the classified maps, a user’s mapping accuracy of 88% (n = 146) was achieved. The results will support the detection and eradiation of Banana Bunchy Top Virus

    Lessons learned from testing a prototype combining talent development and leadership innovation in a Scandinavian hospital setting

    Get PDF
    This paper addresses the potential clash between the “non-failure” culture of the hospital and the “fail-fast-forward” approach of innovation by sharing and analysing narratives from a field study of innovation processes. The case is a large university hospital in Scandinavia and the health care sector in general is outlined as context of the challenges addressed by the innovation processes. The narratives fall into three overlapping categories; the product, the process and the culture of innovation. Regarding the product of innovation, we outline the lessons learned about tensions created by ambitions of radical innovation in a public sector context, challenged by the idea of small-scale experiments and the participant’s feelings of inferiority. As for the process of innovation: we share the lessons learned about how linear and non-linear thinking affects the process of innovation. Addressing the culture of innovation, we discuss the lessons learned from working with a prototype testing approach in a system characterized by an evidence-based non-failure culture. Finally we summarize the lessons learned and share concluding perspectives

    CubeSat constellations provide enhanced crop phenology and digital agricultural insights using daily leaf area index retrievals

    Get PDF
    Satellite remote sensing has great potential to deliver on the promise of a data-driven agricultural revolution, with emerging space-based platforms providing spatiotemporal insights into precisionlevel attributes such as crop water use, vegetation health and condition and crop response to management practices. Using a harmonized collection of high-resolution Planet CubeSat, Sentinel-2, Landsat-8 and additional coarser resolution imagery from MODIS and VIIRS, we exploit a multisatellite data fusion and machine learning approach to deliver a radiometrically calibrated and gap-filled time-series of daily leaf area index (LAI) at an unprecedented spatial resolution of 3 m. The insights available from such high-resolution CubeSat-based LAI data are demonstrated through tracking the growth cycle of a maize crop and identifying observable within-field spatial and temporal variations across key phenological stages. Daily LAI retrievals peaked at the tasseling stage, demonstrating their value for fertilizer and irrigation scheduling. An evaluation of satellite-based retrievals against field-measured LAI data collected from both rain-fed and irrigated fields shows high correlation and captures the spatiotemporal development of intra- and inter-field variations. Novel agricultural insights related to individual vegetative and reproductive growth stages were obtained, showcasing the capacity for new high-resolution CubeSat platforms to deliver actionable intelligence for precision agricultural and related applications

    Integration of LiDAR and QuickBird imagery for mapping riparian zones in Australian tropical savannas.

    Get PDF
    Riparian zones are exposed to increasing pressures because of disturbance from agricultural and urban expansion and overgrazing. Accurate and cost-effective mapping of riparian environments is important for managing their functions associated with water quality, biodiversity, and wildlife habitats. The objective of this research was to integrate Light Detection and Ranging (LiDAR) and high spatial resolution QuickBird-2 imagery to estimate riparian zone attributes. A digital terrain model (DTM), a tree canopy model (TCM) and a plant projective cover (PPC) map were first obtained from the LiDAR data. The LiDAR-derived products and the QuickBird bands were then combined in an object-oriented approach to map riparian vegetation, streambed, vegetation overhang, bare ground, woodlands and rangelands. These products were also used to assess the riparian zone width. The overall result was a combined method, taking advantage of both optical and airborne laser systems, for mapping riparian forest structural parameters and riparian zone dimensions. This work shows the accuracy able to be obtained by integrating LiDAR data with high spatial resolution optical imagery to provide more detailed information for riparian zone management
    corecore